Modeling and Simulation at INL

Mark DeHart, Ph.D.
Directorate Fellow, Nuclear Science and Technology Directorate
Idaho National Laboratory

On behalf of Richard Martineau, Ph.D.
Director on Modeling and Simulation, Nuclear Science and Technology Directorate
MOOSE Multiphysics
National Needs and INL Focus Areas

• NPP component aging and damage evolution, structural mechanics
 – Grizzly: LWRS R&D to safely operate NPPS beyond original design life

• Multi-scale fuels performance
 – BISON: Engineering-scale fuel performance application
 – Marmot: Meso-scale multiphysics simulation tool

• Radiation physics for irradiated nuclear fuel & materials
 – Rattlesnake: Multi-scale multi-level radiation transport
 – MAMMOTH: Advanced Multi-Scale reactor physics coupling Rattlesnake, BISON with depletion
 – Sabertooth: MAMMOTH with RELAP-7 and Marmot (created to address licensing issues)

• Reactor systems/safety analysis
 – RELAP-7: Reactor Excursion and Leak Analysis Program
 – REDTAIL - Risk-informed Environment for Dynamic Time-dependent Analysis)

• Seismic and Repository Analysis
 – MASTODON (Multi-hazard Analysis for STOchastic time-DOmain phenomena)
 – BADGER: Barrier Analysis Design software for Geologic Engineered Repositories

• In short, INL’s emerging M&S technologies are directed toward predicting and tracking the fuel state from beginning of life in a reactor through extended long term storage (300 years) to geologic disposal.
MOOSE Multiphysics
National Needs and INL Focus Areas

- Do not think of this as multiple projects. It is one project composed of multiple
development efforts in closely coordinated teams
- Any of these are both INL needs and potential collaboration areas
MOOSE Multiphysics
Potential University Collaboration Areas

- Our current funding programs include:
 - The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program
 - The Light Water Reactor Sustainability (LWRS) program
 - Consortium for Advanced Simulation of LWRs (CASL)
 - INL’s Laboratory Directed Research and Development (LDRD) program

- Our funded projects support:
 - Advanced M&S for the Transient Reactor Test Facility (TREAT) - NEAMS
 - RELAP-7 development: LWRS, NEAMS
 - BISON development and validation: Accident Tolerant Fuels (ATF), NEAMS, in-kind support from Halden

- INL M&S teams are collaborating with:
 - NRC
 - NNL (Bettis/KAPL)
 - EPRI
 - ANL (PETSc)
 - UTexas (LibMesh)
 - OECD/NEA
 - LANL
 - Significant no. of universities (including all of NUC)
MOOSE Multiphysics
Potential University Collaboration Areas

Our areas of interest outside of currently funded work:
- Advanced Test Reactor (ATR) modeling
- Validation
 - TRIGAs
 - ATR and ATR experiments
 - TREAT experiments
 - LWR measurements (startup testing, spent fuel characterization)
- Multiphysics measurements of any kind
- Flow/surface measurements for closure relationships
- HTGR and FHR concepts
- Advanced reactor concepts
- Space reactors
- 3D Kinetics
- Multiphysics based on Monte Carlo transport methods.
MOOSE Multiphysics
Potential Funding Sources

- NEUP
- NNSA
- INL LDRD
- ART
- NEAMS
- NRC
- ARPA-E
- Office of Science
- Industry
Background information
INL Developed MOOSE-based Tools Available for NUC Collaboration

Component aging and damage evolution, structural mechanics:

Grizzly: LWRS R&D to safely operate NPPS beyond original design life
- Structural mechanics for reactor pressure vessel (RPV), containment vessels, fuel assemblies, etc.
- Reactor Metals (embrittlement, fatigue, corrosion, etc.), e.g. RPV, core internals, and weldments.
- Long-term concrete degradation (mechanical, chemical, and irradiation).

Multi-scale fuels performance, **BISON and Marmot:**

BISON: Engineering-scale Fuel Performance Application (LDRD)
- All-fuels: Models LWR, TRISO, plate, and metal fuels in 1D, 2D and 3D.
- Tightly coupled to reactor physics applications.

Marmot: Meso-scale Multiphysics Simulation Tool (LDRD)
- Predicts coevolution of microstructure and physical properties due to applied load, temperature, and radiation damage. Designed to correct BISON’s empirical models in a coupled manner.
- Phase field modeling coupled to finite strain mechanics and heat conduction.
Radiation Physics for Irradiated Nuclear Fuel & Materials

Rattlesnake: Multi-scale Multi-level Radiation Transport (LDRD):
- Multi-scale: Assembly homogenized, pin-homogenized, fuel-resolved simultaneously in one simulation
- Designed to support tightly coupled nonlinear multiphysics simulations, *primarily focused on fuel performance analysis*, both locally and core-wide for safety issues and ATF design (strong transients).
- ATR and TREAT simulation capability design goals.

MAMMOTH: Advanced Multi-Scale Nuclear/Reactor Physics:
- Isotopic composition to update local fuel thermal-mechanical-chemical property evolution and fission gas inventories.
- Isotope, density, and temperature feedback (to account for burnup) for cross-sections.

Reactor Systems/Safety Analysis

RELAP-7: Reactor Excursion and Leak Analysis Program
- The Next Generation Reactor System Analysis Tool
- The overall design goal of RELAP-7 development is to leverage 30 years of advancements in software design, numerical integration methods, and physical models.
- Multi-physics integration with other MOOSE-based applications (BISON, MAMMOTH, Rattlesnake)
Reactor Systems/Safety Analysis

REDTAIL: Risk-informed Environment for Dynamic Time-dependent Analysis:

- Dynamic Probabilistic Risk Analysis (D-PRA)
- Event sequence control (for D-PRA)
- Coupled multi-physics (RELAP-7, BISON, etc.)
- Risk Informed Safety Marine Characterization (RISMC)

Seismic and Repository Analysis

MASTODON (Multi-hazard Analysis for Stochastic time-DoMAIN phenomena):

- Seismic effects on NPPs (stochastic nonlinear soil-structure interaction)
- Structural dynamics provided by Grizzly
- Dynamic porous media flow, hysteretic nonlinear soil constitutive models (elasticity and plastic flow directions, and hardening softening laws)
- Hysteretic nonlinear structural constitutive models, and geometric nonlinear soil behavior (gapping and sliding)

BADGER: Barrier Analysis Design software for Geologic Engineered Repositories (LDRD):

- Single and multiphase porous flow
- Heat/Energy transport, Reactive Transport, Geomechanics
- Simulate across spatial and temporal scales from EBS to far field in one simulation