Predicting Radiation-Induced Microstructural Change via Implementation and Validation of Multiscale Cluster Dynamics in MOOSE

Cody Permann
MOOSE Team Lead
INL

MIT Collaborators:
Miaomiao Jin (PhD Student)
Prof. Michael Short
Overview

- Create a MOOSE-based application, “Geminio”, to predict & understand radiation-induced microstructural change.
- Extend MOOSE into a new field – long-term radiation damage.
- MIT is interested in contributing the completed work as a MOOSE module so that it may be coupled to multiscale simulations.
Objectives

Current Implementation

- **Timeline**
 - 10^6 s: Microstructure evolution, Rate theory
 - 10^6 s: Defects/Solute diffusion, Kinetic Monte Carlo
 - 10^{-6} s: Cascade annealing, Molecular dynamics
 - 10^{-15} s: Cascade, Binary collision approximation
 - 10^{-18} s: Collision

- **Study methods**
 - Microstructure evolution
 - Defects/Solute diffusion
 - Cascade annealing
 - Cascade
 - Collision

Current Implementation

- **Binary collision**
 - Lammmps
 - Cascade annealing
 - Defects production spectrum

- **Molecular dynamics**
 - SRIM/TRIM
 - Dose rate
 - PKA energy spectrum

- **Rate theory**
 - MOOSE
 - Evolution of defects size distribution
 - Spatial dependent
 - Computation acceleration
 - Grouping
 - Fokker-Planck

Benefits: Predict radiation damage on long timescale (to 100’s of DPA), guide radiation-resistant material design, explain experiments
Accomplishments

• Cluster Dynamics has been implemented in MOOSE
• Spatial dependence (for ion irradiation) is working
• Results can be linked to properties such as void swelling
• This tool would be applicable to study other phenomena described by rate theory such as precipitation

<table>
<thead>
<tr>
<th>Task</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build kMC and CD model scaffolds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design standardized CD dataset format</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Compile data for Si, model & real materials</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Preconditioning & HPC efficiency optimization</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Validation experiments & test cases</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Documentation, generalization, UI, module release</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Accomplishments – Explaining Tungsten Self-Ion irradiation Experiments

Discussion:
- A good agreement has been achieved with experiment
- The break of power-law originates from the mobility of SIA clusters even at very low temperature (30K)
- Provides alternative explanation for TEM-observed cluster sizes

- Publication under re-review in Journal of Nuclear Materials
Next Step – Spatial Dependence

- Swelling behavior in Fe

Experiment condition:
- 450 C
- 3.5 MeV Fe\(^{++}\) self-ion irradiation
- Peak dose rate: 4.6\(\times\)10\(^{-3}\) dpa/s

Future Focus – Direct Link to Rapid Radiation Measurements

Transient grating spectroscopy

MD simulated signal

Follow-on funding to be sought from NSF, DOE-BES

Status, Variances, Changes

- Heavy use of Fission supercomputer at INL HPC
 - No other resources used or needed
 - Will use Short lab’s transient grating spectroscopy (TGS) system, SEM/FIB & TEM for experiments

- No variances, no changes in scope or budget

- On schedule, on budget